LECTURE 18 DERIVATIVES OF EXPONENTIAL FUNCTIONS

DERIVATIVES OF a* AND log, u

About a®. Now, suppose f (z) = a® where a > 0. We want to calculate [’ ().
Clearly, by the exponentiation trick,

f(l‘) — g% = elnaz _ emlna
Remember here that a is a constant, and so is In (a). To find f’ (z), we do chain rule.

d d d
%Jf (CC) — %emlna — ezlna% (:clna) _ azlna.
We can verify that
—e” =¢e"lne = €.

dx

How about f(z) = a“*) where a > 0 and u is a differentiable function of z? By chain rule, the inner
function is u (z) and outer function is a”.

d d du
el _ = ou(r) _ [ u(z) el
dmf (@) dz” (a In a) dz’

Always remember, Ina is a constant, not a function of anything.

About log, x. Then, consider g (z) = log, z, a > 0. We again want ¢’ (z). We utilize the change of base
formula,

Inx

= 1 = —

g(z) =logyz =1 —,

where again Ina is a constant. Thus,
1 d 1
/!

= — 1 = .
g () lnadx(nm) zlna

Furthermore, if u is a differentiable function of z, then

d | (@) 1 du

—log, u(zx) = ————.

dz 8 u(z)Ina dx
Another justification for the power rule. Consider the function f (z) = z™. Then, by the exponentia-
tion trick (and bringing out the power), we can write

f(.’L‘) — " = enlnz
Then, we can find the derivative via the differentiation rules found above. By chain rule,

d d d
%f (x) = %e"“”” = e”lnw% (nlnz) =z (%) =na" L.
Example. Harder problem. Find the derivative of f (x) = z*.

There are two ways to do this, all of which you should know by now.

Case 1. We do the exponentiation trick.
f(.’L‘) g - elnx” — ewlnx.
Then, we differentiate using chain rule.

1
%f(m) = %ezlnm = e“nz% (xlnz) = z” (lnx—kx . x) =z (Inz+1).

1
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Case 2. We do implicit differentiation. First, take In of both sides.
In(f(z)) =xInz.
d

Then, we perform - on both sides.
d d
~n(f (2) = 2 (zIna)

You realise that the LHS has inner function f (z) and outer function In (z). Thus, the above
implies

d 1
f(m)%f(x) = (lnx+x~x)

d

2 (@) = f (@) (mz +1)

=z%(lnxz+1).
Same answer as the first approach.

Theorem.

1 1\°
e=lim (1+2)* = lim (1+) .
T

z—0 xT—00

Proof. The proof may be a little top-to-bottom, as in, pretty tricky. We don’t start with the limit as stated.
Instead, we try to show

In (lim (1+ m)%) =1.
z—0

Noting that In (x) is a continuous function, we can definitely write the LHS as (by definition of continuity,
In (lim, ) = limg 4 In (2))

8|

In (lim 1+ x)%) = lim In (1 + z)

x—0 x—0
In(1
_ gy A+ 2)
x—0 x

This starts to look like a derivative, by adding a new term In (1) = 0,
In (1 In (1 —In(1 d 1
lim w = lim n(l+e)-mn) = (ln (l‘)> lo=1= = [a=1= 1
z—0 T 0 x dx T

and we are done. 0

Example. Evaluate the limit lim, o (1 4+ 2:17)%.

Proof. Certainly, we want to make use of the theorem. How? The idea is to make sure the 2z here matches
with the exponent as i, by doing some tricks. Note that

(1+22)7 = ((1 +2x)i)2

Thus,

1 2
m(l+22)° = lim ((1+2x)2w)

Example. Show that lim,, .. (1 + %)n



Solution.
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One can replace n by y. Then,

lim
n—o0

Yy
lim (1 T w)
y—>00 y
1

lim (1 + zz)
z—0
lim ((1 + xz)°=

z—0

(lim (1+ :cz)zilz

(Jim, 1-+0)%)

er.



