
LECTURE 18 DERIVATIVES OF EXPONENTIAL FUNCTIONS

Derivatives of au and loga u

About ax. Now, suppose f (x) = ax where a > 0. We want to calculate f ′ (x).
Clearly, by the exponentiation trick,

f (x) = ax = eln ax

= ex ln a.

Remember here that a is a constant, and so is ln (a). To �nd f ′ (x), we do chain rule.

d

dx
f (x) =

d

dx
ex ln a = ex ln a d

dx
(x ln a) = ax ln a.

We can verify that
d

dx
ex = ex ln e = ex.

How about f (x) = au(x) where a > 0 and u is a di�erentiable function of x? By chain rule, the inner
function is u (x) and outer function is ax.

d

dx
f (x) =

d

dx
au(x) =

(
au(x) ln a

) du

dx
.

Always remember, ln a is a constant, not a function of anything.

About loga x. Then, consider g (x) = loga x, a > 0. We again want g′ (x). We utilize the change of base
formula,

g (x) = loga x =
lnx

ln a
,

where again ln a is a constant. Thus,

g′ (x) =
1

ln a

d

dx
(lnx) =

1

x ln a
.

Furthermore, if u is a di�erentiable function of x, then

d

dx
loga u (x) =

1

u (x) ln a

du

dx
.

Another justi�cation for the power rule. Consider the function f (x) = xn. Then, by the exponentia-
tion trick (and bringing out the power), we can write

f (x) = xn = en ln x.

Then, we can �nd the derivative via the di�erentiation rules found above. By chain rule,

d

dx
f (x) =

d

dx
en ln x = en ln x d

dx
(n lnx) = xn

(n
x

)
= nxn−1.

Example. Harder problem. Find the derivative of f (x) = xx.
There are two ways to do this, all of which you should know by now.

Case 1. We do the exponentiation trick.

f (x) = xx = eln xx

= ex ln x.

Then, we di�erentiate using chain rule.

d

dx
f (x) =

d

dx
ex ln x = ex ln x d

dx
(x lnx) = xx

(
lnx+ x · 1

x

)
= xx (lnx+ 1) .

1
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Case 2. We do implicit di�erentiation. First, take ln of both sides.

ln (f (x)) = x lnx.

Then, we perform d
dx on both sides.

d

dx
ln (f (x)) =

d

dx
(x lnx)

You realise that the LHS has inner function f (x) and outer function ln (x). Thus, the above
implies

1

f (x)

d

dx
f (x) =

(
lnx+ x · 1

x

)
=⇒ d

dx
f (x) = f (x) (lnx+ 1)

= xx (lnx+ 1) .

Same answer as the �rst approach.

Theorem.

e = lim
x→0

(1 + x)
1
x = lim

x→∞

(
1 +

1

x

)x

.

Proof. The proof may be a little top-to-bottom, as in, pretty tricky. We don't start with the limit as stated.
Instead, we try to show

ln
(
lim
x→0

(1 + x)
1
x

)
= 1.

Noting that ln (x) is a continuous function, we can de�nitely write the LHS as (by de�nition of continuity,
ln (limx→a x) = limx→a ln (x))

ln
(
lim
x→0

(1 + x)
1
x

)
= lim

x→0
ln (1 + x)

1
x

= lim
x→0

ln (1 + x)

x

This starts to look like a derivative, by adding a new term ln (1) = 0,

lim
x→0

ln (1 + x)

x
= lim

x→0

ln (1 + x)− ln (1)

x
=

(
d

dx
ln (x)

)
|x=1=

1

x
|x=1= 1

and we are done. �

Example. Evaluate the limit limx→0 (1 + 2x)
1
x .

Proof. Certainly, we want to make use of the theorem. How? The idea is to make sure the 2x here matches
with the exponent as 1

2x , by doing some tricks. Note that

(1 + 2x)
1
x =

(
(1 + 2x)

1
2x

)2

.

Thus,

lim
x→0

(1 + 2x)
1
x = lim

x→0

(
(1 + 2x)

1
2x

)2

=
(
lim
x→0

(1 + 2x)
1
2x

)2

y=2x
=

(
lim
y→0

(1 + y)
1
y

)2

= e2

�

Example. Show that limn→∞
(
1 + x

n

)n
.
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Solution. One can replace n by y. Then,

lim
n→∞

(
1 +

x

n

)n

= lim
y→∞

(
1 +

x

y

)y

= lim
z→0

(1 + xz)
1
z

= lim
z→0

(
(1 + xz)

1
xz

)x

=
(
lim
z→0

(1 + xz)
1
xz

)x

x 6=0
=

(
lim
w→0

(1 + w)
1
w

)x

= ex.


