LECTURE 18 DERIVATIVES OF EXPONENTIAL FUNCTIONS

Derivatives of a^u and $\log_a u$

About a^x . Now, suppose $f(x) = a^x$ where a > 0. We want to calculate f'(x). Clearly, by the exponentiation trick,

$$f(x) = a^x = e^{\ln a^x} = e^{x \ln a}.$$

Remember here that a is a constant, and so is $\ln(a)$. To find f'(x), we do chain rule.

$$\frac{d}{dx}f(x) = \frac{d}{dx}e^{x\ln a} = e^{x\ln a}\frac{d}{dx}(x\ln a) = a^x\ln a.$$

We can verify that

$$\frac{d}{dx}e^x = e^x \ln e = e^x$$

How about $f(x) = a^{u(x)}$ where a > 0 and u is a differentiable function of x? By chain rule, the inner function is u(x) and outer function is a^x .

$$\frac{d}{dx}f\left(x\right) = \frac{d}{dx}a^{u\left(x\right)} = \left(a^{u\left(x\right)}\ln a\right)\frac{du}{dx}.$$

Always remember, $\ln a$ is a constant, not a function of anything.

About $\log_a x$. Then, consider $g(x) = \log_a x$, a > 0. We again want g'(x). We utilize the change of base formula,

$$g\left(x\right) = \log_{a} x = \frac{\ln x}{\ln a},$$

where again $\ln a$ is a constant. Thus,

$$g'(x) = \frac{1}{\ln a} \frac{d}{dx} (\ln x) = \frac{1}{x \ln a}.$$

Furthermore, if u is a differentiable function of x, then

$$\frac{d}{dx}\log_a u\left(x\right) = \frac{1}{u\left(x\right)\ln a}\frac{du}{dx}.$$

Another justification for the power rule. Consider the function $f(x) = x^n$. Then, by the exponentiation trick (and bringing out the power), we can write

$$f(x) = x^n = e^{n \ln x}$$

Then, we can find the derivative via the differentiation rules found above. By chain rule,

$$\frac{d}{dx}f(x) = \frac{d}{dx}e^{n\ln x} = e^{n\ln x}\frac{d}{dx}(n\ln x) = x^n\left(\frac{n}{x}\right) = nx^{n-1}.$$

Example. Harder problem. Find the derivative of $f(x) = x^x$.

There are two ways to do this, all of which you should know by now.

Case 1. We do the exponentiation trick.

$$f(x) = x^x = e^{\ln x^x} = e^{x \ln x}.$$

Then, we differentiate using chain rule.

$$\frac{d}{dx}f(x) = \frac{d}{dx}e^{x\ln x} = e^{x\ln x}\frac{d}{dx}(x\ln x) = x^x\left(\ln x + x \cdot \frac{1}{x}\right) = x^x\left(\ln x + 1\right).$$

Case 2. We do implicit differentiation. First, take ln of both sides.

$$\ln\left(f\left(x\right)\right) = x\ln x.$$

Then, we perform $\frac{d}{dx}$ on both sides.

$$\frac{d}{dx}\ln\left(f\left(x\right)\right) = \frac{d}{dx}\left(x\ln x\right)$$

You realise that the LHS has inner function f(x) and outer function $\ln(x)$. Thus, the above implies

$$\frac{1}{f(x)}\frac{d}{dx}f(x) = \left(\ln x + x \cdot \frac{1}{x}\right)$$
$$\implies \frac{d}{dx}f(x) = f(x)\left(\ln x + 1\right)$$
$$= x^{x}\left(\ln x + 1\right).$$

Same answer as the first approach.

Theorem.

$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{x}.$$

Proof. The proof may be a little top-to-bottom, as in, pretty tricky. We don't start with the limit as stated. Instead, we try to show

$$\ln\left(\lim_{x\to 0}\left(1+x\right)^{\frac{1}{x}}\right) = 1.$$

Noting that $\ln(x)$ is a continuous function, we can definitely write the LHS as (by definition of continuity, $\ln(\lim_{x\to a} x) = \lim_{x\to a} \ln(x)$)

$$\ln\left(\lim_{x \to 0} (1+x)^{\frac{1}{x}}\right) = \lim_{x \to 0} \ln\left(1+x\right)^{\frac{1}{x}}$$
$$= \lim_{x \to 0} \frac{\ln\left(1+x\right)}{x}$$

This starts to look like a derivative, by adding a new term $\ln(1) = 0$,

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{\ln(1+x) - \ln(1)}{x} = \left(\frac{d}{dx}\ln(x)\right)|_{x=1} = \frac{1}{x}|_{x=1} = 1$$

and we are done.

Example. Evaluate the limit $\lim_{x\to 0} (1+2x)^{\frac{1}{x}}$.

Proof. Certainly, we want to make use of the theorem. How? The idea is to make sure the 2x here matches with the exponent as $\frac{1}{2x}$, by doing some tricks. Note that

$$(1+2x)^{\frac{1}{x}} = \left((1+2x)^{\frac{1}{2x}}\right)^2.$$

Thus,

$$\lim_{x \to 0} (1+2x)^{\frac{1}{x}} = \lim_{x \to 0} \left((1+2x)^{\frac{1}{2x}} \right)^2$$
$$= \left(\lim_{x \to 0} (1+2x)^{\frac{1}{2x}} \right)^2$$
$$\stackrel{y=2x}{=} \left(\lim_{y \to 0} (1+y)^{\frac{1}{y}} \right)^2$$
$$= e^2$$

Example. Show that $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n$.

Solution. One can replace n by y. Then,

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = \lim_{y \to \infty} \left(1 + \frac{x}{y} \right)^y$$
$$= \lim_{z \to 0} \left(1 + xz \right)^{\frac{1}{z}}$$
$$= \lim_{z \to 0} \left((1 + xz)^{\frac{1}{xz}} \right)^x$$
$$= \left(\lim_{z \to 0} \left(1 + xz \right)^{\frac{1}{xz}} \right)^x$$
$$\stackrel{x \neq 0}{=} \left(\lim_{w \to 0} \left(1 + w \right)^{\frac{1}{w}} \right)^x$$
$$= e^x.$$